Neuronal differentiation of human adipose tissue-derived stem cells for peripheral nerve regeneration in vivo.
نویسندگان
چکیده
OBJECTIVE To evaluate the ability of a tissue-engineered nerve construct composed of a nerve guidance channel and neurally differentiated human adipose tissue-derived stem cells (hASCs) to enhance peripheral nerve regeneration in a rat sciatic nerve model. DESIGN A 13-mm sciatic nerve gap was bridged with silastic conduits in 64 athymic nude rats, and differentiated hASCs were implanted into the nerve gap. The effect of repetitive renewal of differentiation medium on days 14 and 28 was further tested. Adequate negative controls and isograft controls were used. SETTING Academic research. PATIENTS The hASCs were isolated from human adipose tissue of patients undergoing liposuction procedures. MAIN OUTCOME MEASURES Direct measurements of nerve function included sciatic functional index score, extensor postural thrust, and sensory evaluation. Indirect measurements included gastrocnemius and soleus muscle atrophy. Histomorphometric evaluation included the number and diameter of axons and fibers, nerve fiber density, myelin thickness, g-ratio (axon diameter-total fiber diameter ratio), and myelin thickness-axon diameter ratio. RESULTS The use of hASCs demonstrated significantly improved functional recovery as measured by the sciatic functional index, extensor postural thrust, sensory evaluation, and gastrocnemius and soleus muscle weight after 14 days and 1, 2, 3, and 4 months. Groups with their medium renewed also demonstrated further enhanced functional recovery compared with their counterparts that did not have their medium renewed. CONCLUSION This tissue-engineered nerve construct using hASCs was able to improve functional recovery during the first 4 months, comparable with nerve isografts.
منابع مشابه
Review Paper: Adipose Tissue, Adipocyte Differentiation, and Variety of Stem Cells in Tissue Engineering and Regeneration
Human adipose tissue represents an abundant, practical and appealing source of donor tissue for autologous cell replacement. Recent findings have shown that stem cells within the stromalvascular fraction of adipose tissue display a multilineage developmental potential. Adipose tissue-derived stem cells can be differentiated towards adipogenic, osteogenic, chondrogenic,myogenic and neurogenic li...
متن کاملReprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells
The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...
متن کاملComparison of random and aligned PCL nanofibrous electrospun scaffolds on cardiomyocyte differentiation of human adipose-derived stem cells
Objective(s):Cardiomyocytes have small potentials for renovation and proliferation in adult life. The most challenging goal in the field of cardiovascular tissue engineering is the creation of an engineered heart muscle. Tissue engineering with a combination of stem cells and nanofibrous scaffolds has attracted interest with regard to Cardiomyocyte creation applications. Human adipose-derived s...
متن کاملP 125: Treatment of Multiple Sclerosis with Mesenchymal Cells Starfish
Arm grooves of star-fish have mesenchymal stem cells derived from adipose tissue cell. Widespread studies have shown that stem cells derived from adipose-derived mesenchymal stem cell from bone marrow have many similarities in terms of the ability to differentiate into a variety of tissues. Most of the animals live in warm and shallow waters and the waters of this feature is that it is low in d...
متن کاملInduction of Chondrogenic Differentiation of Human Adipose-Derived Stem Cells with TGF-β3 in Pellet Culture System
Objective Adult stem cells which are derived from different tissues, with their unique abilities to self-renew and differentiate into various phenotypes have the potential for cell therapy and tissue engineering. Human adipose tissue is an appropriate source of mesenchymal stem cells with wide differentiation potential for tissue engineering research. In this study isolated stem cells from hum...
متن کاملHealing Potential of Mesenchymal Stem Cells Cultured on a Collagen-Based Scaffold for Skin Regeneration
Background: Wound healing of burned skin remains a major goal in public health. Previous reports showed that the bone marrow stem cells were potent in keratinization and vascularization of full thickness skin wounds. Methods: In this study, mesenchymal stem cells were derived from rat adipose tissues and characterized by flowcytometry. Staining methods were used to evaluate their differentiatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Archives of surgery
دوره 146 6 شماره
صفحات -
تاریخ انتشار 2011